
 Developers Guide

Contributor Documentation

phpGroupWare Application Development

phpGroupWare Documentation Team - phpgroupware-docteam at
gnu.org

v0.9.16.001 5 September 2004

This document explains phpGroupWare’s infrastructure and API, along with what is required to
integrate applications into it.

Contents
1. Introduction

1. Overview of application writing
2. What does the phpGroupWare API provide?

2. Guidelines
1. Requirements
2. Writing/porting your application

3. Installing your application
1. Overview
2. Automatic features
3. Adding files, directories and icons.
4. Making phpGroupWare aware of your application
5. Hooking into Administration page
6. Hooking into Preferences page

4. Infrastructure
1. Overview
2. Directory tree
3. Translations

5. The API
1. Introduction
2. Basic functions
3. Application Functions
4. File functions
5. Email/NNTP Functions

6. Configuration Variables

1. Introduction
2. User information
3. Group information
4. Server information
5. Database information
6. Mail information
7. NNTP information
8. Application information

7. Using Language Support
1. Overview
2. How to use lang support
3. Common return codes

8. Using Templates
1. Overview
2. How to use PHPLIB templates
3. How to use XSLT templates

9. About this document
1. New versions
2. Comments
3. History
4. Copyrights and Trademarks
5. Acknowledgments and Thanks

1 Introduction
phpGroupWare is a web based groupware application framework (API), for writing applications.
Integrated applications such as email, calendar, todo list, address book, and file manager are included.

1.1 Overview of application writing

We have attempted to make writing application for phpGroupWare as painless as possible. We hope any
pain and suffering is cause by making your application work, but not dealing with phpGroupWare itself.

1.2 What does the phpGroupWare API provide?

The phpGroupWare API handles session management, user/group management, has support for multiple
databases, using the PHPLIB database abstraction method, we support templates using the PHPLIB
Templates class, a file system interface, and even a network i/o interface.

On top of these standard functions, phpGroupWare provides several functions to give you the information
you need about the users environment, and to properly plug into phpGroupWare.

2 Guidelines

2.1 Requirements

These guidelines must be followed for any application that wants considered for inclusion into the
phpGroupWare distribution:

It must run on PHP 4.1.0
SQL statements must be compatible with both MySQL, PostgreSQL, M$ SQL Server and SAP-DB
It must use our default header.inc.php include.
It must use our $GLOBALS[’phpgw’]->link($url) for all links (this is for session support).
It must use "POST" for form submit methods.
It must respect phpGW group rights and phpGW user permissions.
It must use our directory structure, template support and lang (multi-language) support.
Where possible it should run on both Unix and NT platforms.
For applications that do not meet these requirements, they can be available to users via the
phpGroupWare "3rd Party Apps" listing on our website. If you need help converting your application
to templates and our lang support, we will try to connect you with someone to help.

2.2 Writing/porting your application

Include files

Each PHP page you write will need to include the header.inc.php along with a few variables.
This is done by putting this at the top of each PHP page.

<?php
$GLOBALS[’phpgw_info’][’flags’][’currentapp’] = ’appname’;
include(’../header.inc.php’);
?>

Of course change application name to fit.
This include will provide the following things:

The phpgwAPI - The phpGroupWare API will be loaded.
The phpGW navbar will be loaded (by default, but can be disabled until a later point.
appname/inc/functions.inc.php - This file is loaded just after the phpgwAPI and before any HTML
code is generated. This file should include all your application specific functions.. You are welcome
to include any additional files you need from within this file.
Note: Depricated and not used for OOP (/index.php?menuaction=app.obj.method) calls.
appname/inc/header.inc.php - This file is loaded just after the system header/navbar, and allows
developers to use it for whatever they need to load.
Note: Depricated and not used for OOP (/index.php?menuaction=app.obj.method) calls.
appname/inc/footer.inc.php - This file is loaded just before the system footer, allowing developers to
close connections and whatever else they need.
Note: Depricated and not used for OOP (/index.php?menuaction=app.obj.method) calls.

The phpGW footer will be loaded, which closes several connections.

3 Installing your application

3.1 Overview

It is fairly simple to add and delete applications to/from phpGroupWare.

3.2 Automatic features

To make things easy for developers we go ahead and load the following files.

appname/inc/functions.inc.php - This file should include all your application specific functions.
Note: Depricated and not used for OOP (/index.php?menuaction=app.obj.method) calls.
appname/inc/header.inc.php - This file is loaded by $phpgw->common->header just after the system
header/navbar, and allows developers to use it for whatever they need to load.
Note: Depricated and not used for OOP (/index.php?menuaction=app.obj.method) calls.
appname/inc/footer.inc.php - This file is loaded by $phpgw->common->footer just before the system
footer, allowing developers to close connections and whatever else they need.
Note: Depricated and not used for OOP (/index.php?menuaction=app.obj.method) calls.

3.3 Adding files, directories and icons.

You will need to create the following directories for your code
(replace ’appname’ with your application name)

--appname

 +--inc

 | |--functions.inc.php

 | |--header.inc.php

 | |--hook_preferences.inc.php

 | |--hook_admin.inc.php

 | +--footer.inc.php

 +--js

 | |--base

 | +--js_package_name

 +--setup

 | |--default_records.inc.php

 | |--setup.inc.php

 | +--tables_current.inc.php

 +--templates

 +--default

3.4 Making phpGroupWare aware of your application

To make the application aware of your application, add your application details to the applications table.
This can be done via the GUI administration screen, or via a SQL script. The script below should only be
used during initial development. You should use the phpGroupWare setup system for install and updating
the final version of your application.

INSERT INTO phpgw_applications (app_name, app_title, app_enabled)
 VALUES(’appname’, ’The App name’, 1);

3.5 Hooking into Administration page

When a user goes to the Administration page, it starts appname/inc/hook_admin.inc.php for each
application that is enabled, in alphabetical order of application title. If the file exists, it is include()d in the
hopes it will display a selection of links to configure that application.

Simple Example:

<?php
 // Old linear script style
 $file[’Site Configuration’] = $GLOBALS[’phpgw’]->link(’myapp/myAdminPage.php’);
 // OR - OOP Style
 $file[’Site Configuration’] = $GLOBALS[’phpgw’]->link(’/index.php’,
 array(menuaction => ’myapp.uiobj.admin_method’);
 display_section(’myapp’,$file);
?>;

Look at headlines/inc/hook_admin.inc.php and admin/inc/hook_admin.inc.php for more examples.

Things to note:

Links are relative to the admin/index.php file, not your application’s base directory. (so use
"appname" in your link() calls)
The file is brought in with include() so be careful to not pollute the name-space too much

The standard $GLOBALS[’phpgw’] and $GLOBALS[’phpgw_info’] variables are in-scope, as is
$appname which corresponds to the application name in the path.

3.6 Hooking into Preferences page

The mechanism to hook into the preferences page is identical to the one used to hook into the
administration page, however it looks for appname/inc/hook_preferences.inc.php instead of
appname/inc/hook_admin.inc.php. The same functions and variables are defined.

4< Infrastructure

4.1 Overview

phpGroupWare attempts to provide developers with a sound directory structure to work from.
The directory layout may seem complex at first, but after some use, you will see that it is designed to
accommodate a large number of applications and functions.

4.2 Directory tree
--phpgroupware
 |
 +--admin
 |
 +--docs (installation docs)
 |
 +--files (Note: must be out of webserver document root!)
 | |
 | +--groups
 | |
 | +--homes
 | |
 | +--users
 |
 +--phpgwapi
 | |
 | +--cron (phpgroupware’s optional daemons)
 | |
 | +--doc (developers docs)
 | |
 | +--inc
 | | |
 | | +--class.phpgw.inc.php
 | | |
 | | +--phpgw_info.inc.php
 | | |
 | | +--class.common.inc.php
 | | |
 | | +--etc..
 | |
 | +--js (javascript)
 | | |
 | | +--base
 | | |
 | | +--js_package_name
 | |
 | +--manual
 | |
 | +--setup
 | | |
 | | +--baseline.inc.php
 | | |
 | | +--default_records.inc.php
 | | |

 | | +--tables_current.inc.php
 | | |
 | | +--tables_update.inc.php
 | |
 | +--templates
 | | |
 | | +--default
 | | | |
 | | | +--images
 | | |
 | | +--verilak
 | | |
 | | +--images
 | |
 | +--themes
 | |
 | +--default.theme
 |
 +--preferences
 |
 +--setup

4.3 Translations

See section 7, where this is explained in detail.

5 The API

5.1 Introduction

phpGroupWare attempts to provide developers with a useful API to handle common tasks.

To do this we have created a multi-dimensional class $GLOBALS[’phpgw’]->.

This allows for terrific code organization, and help developers easily identify the file that the function is
in. All the files that are part of this class are in the inc/core directory and are named to match the sub-class.

Example: $phpgw->send->msg() is in the inc/phpgwapi/class.send.inc.php file.

5.2 Basic functions

$GLOBALS[’phpgw’]->link

$GLOBALS[’phpgw’]->link($url, $args)
Add support for session management. ALL links must use this, that includes href’s form actions and
header location’s.

If you are just doing a form action back to the same page, you can use it without any parameters.

This function is right at the core of the class because it is used so often, we wanted to save developers a
few keystrokes. Example:

<form name=copy method=post action="<?php echo $GLOBALS[’phpgw’]->link();?>">
/* If session management is done via passing url parameters */
/* The the result would be */
/* <form name=copy method=post action="somepage.php?sessionid=87687693276?kp3=kjh98u80"> */

5.3 Application Functions

$GLOBALS[’phpgw’]->common->phpgw_header

$GLOBALS[’phpgw’]->phpgw_header()
Print out the start of the HTML page, including the navigation bar and includes appname/inc/header.php,
if using deprecated linear scripts style.

$GLOBALS[’phpgw’]->common->phpgw_footer

$GLOBALS[’phpgw’]->phpgw_footer()
Prints the system footer, and includes appname/inc/footer.php

$GLOBALS[’phpgw’]->common->appsession

$GLOBALS[’phpgw’]->common->appsession($data)
Store important information session information that your application needs.
$GLOBALS[’phpgw’]->appsession will return the value of your session data is you leave the parameter
empty [i.e. $GLOBALS[’phpgw’]->appsession()], otherwise it will store whatever data you send to it.
You can also store a comma delimited string and use explode() to turn it back into an array when you
receive the value back.

Example:

$GLOBALS[’phpgw’]->common->appsession("/path/to/something");
echo "Dir: " . $GLOBALS[’phpgw’]->common->appsession();

5.4 File functions

See Virtual File System (VFS) Developers Guide for more info.

5.5 Email/NNTP Functions

$phpgw->send->msg

$phpgw->msg->send($service, $to, $subject, $body, $msgtype, $cc, $bcc)
Send a message via email or NNTP and returns any error codes.
Example:

 $to = ’someuser@domain.com’;
 $subject = ’Hello buddy’;
 $body = "Give me a call\n Been wondering what your up to.";
 $errors = $GLOBALS[’phpgw’]->msg->send(’email’, $to, $subject, $body);

6 Configuration Variables

6.1 Introduction

phpGroupWare attempts to provide developers with as much information about the user, group, server,
and application configuration as possible.

To do this we provide a multi-dimensional array called "$GLOBALS[’phpgw_info’]", which includes all
the information about your environment.

Due to the multi-dimensional array approach. getting these values is easy.

Here are some examples:

<?php
 // To do a hello username
 echo "Hello " . $GLOBALS[’phpgw_info’][’user’][’fullname’];
 //If username first name is John and last name is Doe, prints: ’Hello John Doe’
?>

<?php
 // To find out the location of the imap server
 echo ’IMAP Server is named: ’ . $GLOBALS[’phpgw_info’][’server’][’imap_server’];
 //If imap is running on localhost, prints: ’IMAP Server is named: localhost’
?>

6.2 User information
$GLOBALS[’phpgw_info’][’user’][’userid’] = The user ID.

$GLOBALS[’phpgw_info’][’user’][’sessionid’] = The session ID

$GLOBALS[’phpgw_info’][’user’][’theme’] = Selected theme

$GLOBALS[’phpgw_info’][’user’][’private_dir’] = Users private dir.
 Use phpGroupWare core functions for access to the files.

$GLOBALS[’phpgw_info’][’user’][’firstname’] = Users first name

$GLOBALS[’phpgw_info’][’user’][’lastname’] = Users last name

$GLOBALS[’phpgw_info’][’user’][’fullname’] = Users Full Name

$GLOBALS[’phpgw_info’][’user’][’groups’] = Groups the user is a member of

$GLOBALS[’phpgw_info’][’user’][’app_perms’] = If the user has access to the current application

$GLOBALS[’phpgw_info’][’user’][’lastlogin’] = Last time the user logged in.

$GLOBALS[’phpgw_info’][’user’][’lastloginfrom’] = Where they logged in from the last time.

$GLOBALS[’phpgw_info’][’user’][’lastpasswd_change’] = Last time they changed their password.

$GLOBALS[’phpgw_info’][’user’][’passwd’] = Hashed password.

$GLOBALS[’phpgw_info’][’user’][’status’] = If the user is enabled.

$GLOBALS[’phpgw_info’][’user’][’logintime’] = Time they logged into their current session.

$GLOBALS[’phpgw_info’][’user’][’session_dla’] = Last time they did anything in their current session

$GLOBALS[’phpgw_info’][’user’][’session_ip’] = Current IP address

6.3 Group information
$GLOBALS[’phpgw_info’][’group’][’group_names’] = List of groups.

6.4 Server information
$GLOBALS[’phpgw_info’][’server’][’server_root’] = Main installation directory

$GLOBALS[’phpgw_info’][’server’][’include_root’] = Location of the ’inc’ directory.

$GLOBALS[’phpgw_info’][’server’][’temp_dir’] = Directory that can be used for temporarily storing files

$GLOBALS[’phpgw_info’][’server’][’files_dir’] = Directory user and group files are stored

$GLOBALS[’phpgw_info’][’server’’][’common_include_dir’] = Location of the core/shared include files.

$GLOBALS[’phpgw_info’][’server’][’template_dir’] = Active template files directory.
 This is defaulted by the server, and changeable by the user.

$GLOBALS[’phpgw_info’][’server’][’dir_separator’] = Allows compatibility with WindowsNT directory format
 - same as php constant SEP

$GLOBALS[’phpgw_info’][’server’][’encrpytkey’] = Key used for encryption functions

$GLOBALS[’phpgw_info’][’server’][’site_title’] = Site Title will show in the title bar of each webpage.

$GLOBALS[’phpgw_info’][’server’][’webserver_url’] = URL to phpGroupWare installation.

$GLOBALS[’phpgw_info’][’server’][’hostname’] = Name of the server phpGroupWare is installed upon.

$GLOBALS[’phpgw_info’][’server’][’charset’] = user’s charset, default:iso-8859-1

$GLOBALS[’phpgw_info’][’server’][’version’] = phpGroupWare version.

6.5 Database information

It is unlikely you will need these, because $GLOBALS[’phpgw’]->db will already be loaded as a database
for you to use.

$GLOBALS[’phpgw_info’][’server’][’db_host’] = Address of the database server.
 Usually this is set to localhost - but don’t assume.

$GLOBALS[’phpgw_info’][’server’][’db_name’] = Database name.

$GLOBALS[’phpgw_info’][’server’][’db_user’] = User name.

$GLOBALS[’phpgw_info’][’server’][’db_pass’] = Password

$GLOBALS[’phpgw_info’][’server’][’db_type’] = Type of database.
 Currently M$ SQL Server, MySQL and PostgreSQL are supported.

6.6 Mail information

It is unlikely you will need these, because most email needs are services thru core phpGroupWare
functions.

$GLOBALS[’phpgw_info’][’server’][’mail_server’] = Address of the IMAP server.
 Usually this is set to localhost.

$GLOBALS[’phpgw_info’][’server’][’mail_server_type’] = IMAP or POP3

$GLOBALS[’phpgw_info’][’server’][’imap_server_type’] = Courier/Cyrus, Uwash or UW-Maildir

$GLOBALS[’phpgw_info’][’server’][’imap_port’] = This is usually 143.
 Should only be changed if there is a good reason.

$GLOBALS[’phpgw_info’][’server’][’mail_suffix’] = This is the domain name, used to add to email address

$GLOBALS[’phpgw_info’][’server’][’mail_login_type’] = This adds support for VMailMgr.

 Generally this should be set to ’standard’.

$GLOBALS[’phpgw_info’][’server’][’smtp_server’] = Address of the SMTP server.
 Usually this is set to localhost.

$GLOBALS[’phpgw_info’][’server’][’smtp_port’] = This is usually 25.
 Should only be changed if there is a good reason

6.7 NNTP information
$GLOBALS[’phpgw_info’][’server’][’nntp_server’] = Address of the NNTP server.

$GLOBALS[’phpgw_info’][’server’][’nntp_port’] = This is usually 119.
 Should only be changed if there is a good reason.

$GLOBALS[’phpgw_info’][’server’][’nntp_sender’] = Unknown

$GLOBALS[’phpgw_info’][’server’][’nntp_organization’] = Unknown

$GLOBALS[’phpgw_info’][’server’][’nntp_admin’] = Unknown

6.8 Application information

Each application has the following information available.

$GLOBALS[’phpgw_info’][’apps’][$appname][’title’] = The title of the application.

$GLOBALS[’phpgw_info’][’apps’][$appname][’enabled’] = If the application is enabled. True or False.

$GLOBALS[’phpgw_info’][’server’][’app_include_dir’] = Location of the current application include files.

$GLOBALS[’phpgw_info’][’server’][’app_template_dir’] = Location of the current application tpl files.

$GLOBALS[’phpgw_info’][’server’][’app_lang_dir’] = Location of the current lang directory.

$GLOBALS[’phpgw_info’][’server’][’app_auth’] = DEPRECATED?
 If the server and current user have access to current application

$GLOBALS[’phpgw_info’][’server’][’app_current’] = name of the current application.

7 Using Language Support

7.1 Overview

phpGroupWare is built using a multi-language support scheme. This means the pages can be translated to
other languages very easily. Translations of text strings are stored in the phpGroupWare database, and can
be modified by the phpGroupWare administrator.

7.2 How to use lang support

The lang() function is your application’s interface to phpGroupWare’s internationalization support.

While developing your application, just wrap all your text output with calls to lang(), as in the following
code:

$x = 42;
echo lang(’The counter is %1’, $x).’
’;

This will attempt to translate ‘‘The counter is %1’’, and return a translated version based on the current
application and language in use. Note how the position that $x will end up is controlled by the format
string, not by building up the string in your code. This allows your application to be translated to
languages where the actual number is not placed at the end of the string.

When a translation is not found, the original text will be returned with a * after the string. This makes it
easy to develop your application, then go back and add missing translations (identified by the *) later.

Without a specific translation in the lang table, the above code will print:

The counter is 42*

If the current user speaks Italian, the string returned will be:

il contatore è 42

The lang function
lang($key, $m1="", $m2="", $m3="", $m4="", $m5="", $m6="", $m7="", $m8="", $m9="", $m10="")

[$key]

is the string to translate and may contain replacement directives of the form %n. This string should be
lower case.

[$m1]

is the first replacement value or may be an array of replacement values (in which case $m2 and above
are ignored).

[$m2 - $m10]

the 2nd through 10th replacement values if $m1 is not an array.

The database is searched for rows with a lang.message_id that matches $key. If a translation is not found,
the original $key is used. The translation engine then replaces all tokens of the form %N with the Nth
parameter (either $m1[N] or $mN).

Adding translation data

An application called Translation Tools has been developed to make this easier. Please use this
application or edit the lang files manually. The table information is here as a reference, but direct database
insertions should not be used.

The lang table

The translation class uses the lang table for all translations. We are concerned with 4 of the columns to
create a translation:

[message_id]

The key to identify the message (the $key passed to the lang() function). This is written in English.

[app_name]

The application the translation applies to, or common if it is common across multiple applications.

[lang]

The code for the language the translation is in.

[content]

The translated string.

phpgw_??.lang

The translations are now being done thru the database, and may be configurable to use other mechanisms
in future releases.

You can use the developer_tools translations application for creating the "lang files", which will be
installed through the setup application. Alternatively you can edit the files manually. The file naming
convention for the lang files is phpgw_<langcode>.lang . The files are stored in the
app/setup directory. The format of the files is as follows:

english phrase in lower case appname ** Translated phrase in desired case.

Notes:

replace ** with the desired language code, as used in the filename
tabs are used to deliniate "columns"

translating the content to reflect the message_id string in the lang language. If the string is specific to your
application, put your application name in for app_name otherwise use the name common. The message_id
should be in lower case for a small increase in speed.

7.3 Common return codes

If you browse through the phpGroupWare sources, you may notice a pattern to the return codes used in
the higher-level functions. The codes used are partially documented in the doc/developers/CODES file.

Codes are used as a simple way to communicate common error and progress conditions back to the user.
They are mapped to a text string through the check_code() function, which passes the strings through
lang() before returning.

For example, calling

echo check_code(13);

Would print

Your message has been sent

translated into the current language.

8 Using Templates

8.1 Overview

phpGroupWare is built using a templates based design. This means the display pages, stored in tpl files,
can be translated to other languages, made to look completely different.

phpGroupWare is changing template engines for the 0.9.18 release. All versions of phpGroupWare upto
0.9.16 use the PHPLIB template engine. As of the 0.9.18 release phpGroupWare will use a "home grown"
XSLT based template engine.

8.2 How to use PHPLIB templates

For Further info read the PHPLIBs documentation for their template class.
http://phplib.sanisoft.com

8.3 How to use XSLT templates

Whoops, there is no documentation available on this - hassle the docteam to produce something.

9 About this document

9.1 New versions

The newest version of this document can be found on our website http://docs.phpgroupware.org as HTML
and plain text.

9.2 Comments

Comments on this HOWTO should be directed to the phpGroupWare developers mailing list
phpgroupware-docteam at gnu.org

To subscribe, go to http://support.phpgroupware.org/lists

http://phplib.sanisoft.com/
http://docs.phpgroupware.org/contrib
http://support.phpgroupware.org/lists

9.3 History

This document was written by Dan Kuykendall.
2000-09-25
documentation on lang(), codes, administration and preferences extension added by Steve Brown.
2001-01-08
fixed directory structure, minor layout changes, imported to lyx source - Darryl VanDorp
2003-12-01
Started clean up - skwashd
2004-08-04
More cleaning up - skwashd

9.4 Copyrights and Trademarks

Copyright © Free Software Foundarion. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation.

A copy of the license is available at http://www.gnu.org/copyleft/fdl.html

9.5 Acknowledgments and Thanks

Thanks to Joesph Engo for starting phpGroupWare (at the time called webdistro). Thanks to all the
developers and users who contribute to making phpGroupWare such a success.

The most recent version of this document can be found at docs.phpgroupware.org
Copyright © 2000-2004 Free Software Foundation Inc, distributed under the terms of the GNU Free
Documentation License
Source: $Source: /cvsroot/phpgwapi/phpgwapi/doc/index.html,v $
Version: $Revision: 1.2.10.4 $
Last Modified: $Date: 2004/09/05 01:19:38 $ by $Author: skwashd $

http://www.gnu.org/copyleft/fdl.html
http://docs.phpgroupware.org/contrib/
http://www.fsf.org/
http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html

	phpGroupWare Application Development
	
	phpGroupWare Documentation Team - phpgroupware-docteam at gnu.org
	v0.9.16.001 5 September 2004

	Contents
	1 Introduction
	1.1 Overview of application writing
	1.2 What does the phpGroupWare API provide?

	2 Guidelines
	2.1 Requirements
	2.2 Writing/porting your application
	Include files

	3 Installing your application
	3.1 Overview
	3.2 Automatic features
	3.3 Adding files, directories and icons.
	3.4 Making phpGroupWare aware of your application
	3.5 Hooking into Administration page
	3.6 Hooking into Preferences page

	4< Infrastructure
	4.1 Overview
	4.2 Directory tree
	4.3 Translations

	5 The API
	5.1 Introduction
	5.2 Basic functions
	$GLOBALS['phpgw']->link

	5.3 Application Functions
	$GLOBALS['phpgw']->common->phpgw_header
	$GLOBALS['phpgw']->common->phpgw_footer
	$GLOBALS['phpgw']->common->appsession

	5.4 File functions
	5.5 Email/NNTP Functions
	$phpgw->send->msg

	6 Configuration Variables
	6.1 Introduction
	6.2 User information
	6.3 Group information
	6.4 Server information
	6.5 Database information
	6.6 Mail information
	6.7 NNTP information
	6.8 Application information

	7 Using Language Support
	7.1 Overview
	7.2 How to use lang support
	The lang function
	Adding translation data
	The lang table
	phpgw_??.lang

	7.3 Common return codes

	8 Using Templates
	8.1 Overview
	8.2 How to use PHPLIB templates
	8.3 How to use XSLT templates

	9 About this document
	9.1 New versions
	9.2 Comments
	9.3 History
	9.4 Copyrights and Trademarks
	9.5 Acknowledgments and Thanks

